

Let's talk about the last lab!

Let's talk about the last lab!

What circumstances made the model fit better? worse?

what does this even mean?

Progeria affects ~159 patients in the US

we have a dataset of all American pediatric patients

Q: If my model predicts with 99.99% accuracy, is it good enough?

we have a dataset of all American pediatric patients

Progeria affects ~159 patients in the US

6

we have a dataset of all American pediatric patients

actually pretty accurate!

Progeria affects ~159 patients in the US

Accuracy, Precision, and Recall

"Selection space"

TRUE POSITIVE

TP: Model selects positive and patient is **positive**

FALSE POSITIVE

FP: Model selects positive and patient is **negative**

FALSE NEGATIVE

FN: Model selects negative and patient is **positive**

Accuracy Overall ability of model

"Number of cases where we chose positive when patient is positive

and

Number of cases where we chose negative when patient is negative"

"Everything"

TP: Model selects positive and patient is **positive**

FP: Model selects positive and patient is **negative**

Accuracy

Overall ability of model

FN: Model selects negative and patient is **positive**

TN: Model selects negative and patient is **negative**

Precision

Accuracy of what we selected. Or amount of selection that's actually correct.

"Number of cases where we chose positive when patient is positive"

"All selected **positive** by the model"

TP: Model selects positive and patient is **positive**

FP: Model selects positive and patient is **negative**

"Selection space"

Accuracy

Overall ability of model

Amount of selection that's actually correct.

FN: Model selects negative and patient is **positive**

TN: Model selects negative and patient is **negative**

Precision

18

Recall

Accuracy of what we should select. Or amount of what needs to be selected that is selected

"Number of cases where we chose positive when patient is positive"

"All cases that the patients are positive"

TP: Model selects positive and patient is **positive**

FP: Model selects positive and patient is **negative**

"Selection space"

Accuracy

Overall ability of model

Amount of selection that's actually correct.

20

FN: Model selects negative and patient is **positive**

TN: Model selects negative and patient is **negative**

Precision

Recall

Amount of what needs to be selected that is selected

FALSE POSITIVE

Overall ability of model

Amount of selection that's actually correct.

FALSE NEGATIVE

TRUE NEGATIVE

Precision

Recall

Amount of what needs to be selected that is selected

		Predicted condition		Sources: [6][7][8][9][10][11][12][13][14] view talk edit	
	Total population = P + N	Positive (PP)	Negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR – 1	$\frac{\text{Prevalence threshold (PT)}}{=\frac{\sqrt{\text{TPR} \times \text{FPR}} - \text{FPR}}{\text{TPR} - \text{FPR}}}$
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $=\frac{TP}{P}=1-FNR$	False negative rate (FNR), miss rate = $\frac{FN}{P}$ = 1 – TPR
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out $= \frac{FP}{N} = 1 - TNR$	True negative rate (TNR), specificity (SPC), selectivity $= \frac{TN}{N} = 1 - FPR$
	$\frac{\text{Prevalence}}{=\frac{P}{P+N}}$	Positive predictive value (PPV), precision $= \frac{TP}{PP} = 1 - FDR$	False omission rate (FOR) = $\frac{FN}{PN}$ = 1 – NPV	Positive likelihood ratio (LR+) = $\frac{\text{TPR}}{\text{FPR}}$	Negative likelihood ratio (LR–) = $\frac{FNR}{TNR}$
	$\frac{\text{Accuracy (ACC)}}{= \frac{\text{TP} + \text{TN}}{\text{P} + \text{N}}}$	False discovery rate (FDR) = $\frac{FP}{PP}$ = 1 – PPV	Negative predictive value (NPV) = $\frac{TN}{PN}$ = 1 - FOR	Markedness (MK), deltaP (Δp) = PPV + NPV – 1	Diagnostic odds ratio (DOR) = $\frac{LR+}{LR-}$
	Balanced accuracy (BA) = $\frac{\text{TPR} + \text{TNR}}{2}$	$F_{1} \text{ score}$ $= \frac{2PPV \times TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$	Fowlkes–Mallows index (FM) = $\sqrt{PPV \times TPR}$	Matthews correlation coefficient (MCC) = $\sqrt{TPR \times TNR \times PPV \times NPV}$ - $\sqrt{FNR \times FPR \times FOR \times FDR}$	Threat score (TS), critical success index (CSI), Jaccard index = $\frac{TP}{TP + FN + FP}$

https://en.wikipedia.org/wiki/Precision_and_recall

Accuracy

Overall ability of model

 $\frac{TP + TN}{Total} = xactly zero$

Precision

Amount of selection that's actually correct.

 $\frac{TP}{TP + FP}$

Recall

רי hav

Amount of what needs to be selected that is selected

Progeria affects ~159 patients in the US

we have a dataset of all American pediatric patients

Distance (mm)

Distance (mm)

Distance (mm)

quantifying "threshold"

quantifying "threshold"

ROC Curve!

ROC Curve quantify the amount of "error"/noise that is necessary for a classifier to make a good prediction

AUC area under [the ROC] curve

Q: how do you compare these points

Precision	
	Recall

Self-test

Precision-recall AUC

Q: When do we really need it? Q: what would it look like?

Especially for unbalanced datasets

what makes models fit better

more data balanced data normalized data quality data

more data balanced data normalized data

quality data

more data balanced

balanced data normalized data quality data

Quality

let's say we have a simpler wine dataset

Quality on the y axis

Quality

Quality on the y axis

Quality

Quality on the y axis

Quality

Quality on the y axis

Quality

Quality on the y axis

Quality on the y axis

Acidity on the x axis

■ use more data, get more accurate results

more data balanced

balanced data normalized data quality data

Amber Colored

Angora Super Sweet

Black Ethiopian

Burbank Slicing

Dona

Sophie's Choice

White Bush

Ace 55

more data balanced

balanced data normalized data quality data

more data balanced data normalized data quality data

Let's think about logistic functions!

White

Let's think about logistic functions!

in an ideal world ...but no

4898

What happens when we fit this dataset entirely?

Let's think about logistic functions!

Let's think about logistic functions!

Acidity

Let's think about logistic functions!

■ balanced data, more accurate results

more data balanced data normalized data quality data

more data balanced data

normalized data

quality data

normalized data

Acidity

normalized data

normalized data

more data balanced data

normalized data

quality data

more data balanced data normalized data

quality data

Image credit: Passionned Group

more data balanced data normalized data

quality data

Missing Data

Missing Data

Missing completely at random

Missing at random

Missing not at random

Missing Data

remove

Use mean/most often

regression